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Abstract

Over the past 25 years, much research has been devoted to the development of Health and Usage
Monitoring (HUM) systems for rotorcraft gearbox and drivetrain components. The promise of HUM
systems is the ability to provide accurate information regarding the condition of various flight critical
components. This paper reviews the state of the art in vibration-based helicopter transmission diagnostics.
The development of various damage detection techniques is discussed from a historical perspective, and the
ability of these techniques to detect damage in helicopter transmissions is reviewed. Emerging research
trends suggest that improvements in signal processing, sensor development and individual-tooth mesh
waveform modelling could improve the performance of current and future helicopter transmission
diagnostics.
r 2004 Elsevier Ltd. All rights reserved.
1. Introduction

Over the past 25 years, much research has been focused on vibration-based transmission
damage detection techniques. These techniques are applied to vibration signals collected from
transducers, typically accelerometers, mounted to the transmission housing. The goal of these
techniques is to enhance changes in the signal caused by damaged components within the
see front matter r 2004 Elsevier Ltd. All rights reserved.
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transmission while remaining invariant in the presence of changes caused by normal variations in
the operating condition of the transmission.

1.1. Background

Vibration-based transmission damage detection techniques are critical elements of a system
designed to monitor the health of a helicopter, typically referred to as Health and Usage
Monitoring (HUM) systems or, more recently, as Prognostic and Health Management (PHM)
systems. A more general description of a HUM or PHM system must be provided in order to
understand the role of a damage detection algorithm. Often, the terms HUM and PHM are used
interchangeably. However, there is a subtle difference in their meaning. Specifically, the term
PHM is more general, and was adopted to reflect an expansion of the desired capabilities of the
system. To better understand when each term should be used, the desired capabilities and
supporting technologies associated with each system should be delineated.
A HUM system is a combination of two complimentary subsystems: health monitoring and

usage monitoring. Health monitoring is a procedure for determining the mechanical or functional
condition of a component or system, specifically detecting and possibly diagnosing incipient
damage or degradation that could ultimately lead to a system failure. Usage monitoring is a
process by which the life consumption of various critical components and systems is determined
by assessing operation hours and load history. Thus, a HUM system is expected to perform two
specific tasks. First, it is expected to provide an accurate measure of the current usage of critical
components so that statistical life models can be used to provide an accurate estimate of the point
in time when the part should be replaced. Second, it is expected to indicate the presence of
incipient damage that could lead to failure of a component prior to the end of its expected
safe-life.
A PHM system incorporates a broader range of technologies. Prognostics is a general term that

describes a process to predict the remaining safe-life of a component or system. Note that usage
monitoring is one approach to prognostics. However, another potentially more accurate approach
is to use information about the current health of the system along with damage propagation
models to predict the remaining safe-life of a component once incipient damage has been detected.
The term Health Management describes a procedure to handle the information gathered through
both health monitoring and prognostics. This information can be used to provide an accurate
picture of the current condition of the system and possibly suggest methods to extend the life of
the system through, for example, limitations on flight maneuvers.
The ultimate goal of both PHM and HUM systems is to enable condition-based maintenance

(CBM) for rotorcraft. A rotorcraft that uses CBM is said to have its maintenance on-condition [1].
CBM is a maintenance philosophy that states that system maintenance and component
replacement should only occur when there is objective evidence of an impending failure. To
implement CBM, a reliable, robust, accurate HUM or PHM system is required. To date, a
sufficient HUM or PHM system has not been developed. Thus CBM has yet to be completely
realized.
Currently, to ensure rotorcraft safety and reliability, manufacturers tend toward conservative

safety factors on design and component safe-life estimates, and recommend frequent scheduled
maintenance. More specifically, three techniques are used: damage tolerant or fail-safe designs,
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redundancy, and safe-life determination techniques [2]. Often a HUM system is incorporated
essentially as a backup for these primary techniques.
However, two primary factors are motivating the development of enabling technologies for

rotorcraft CBM. These are increased safety and reliability, and decreased operating cost.
1.2. Motivation

A rotorcraft is an extremely dynamic system. As such, all the flight critical components within
the vehicle are exposed to extreme dynamic loads; sustained vibratory and impulsive loads. Thus
to ensure rotorcraft safety and reliability, maintenance inspections, overhauls, and parts
replacement must be frequently performed [3]. This is an expensive and time consuming task.
Even given these measures, premature failure due to fatigue leads to many helicopter accidents,
resulting in a fatal accident rate per mile flown for rotorcraft an order of magnitude higher than
for conventional fixed-wing aircraft [4]. Also, in the United States, the annual number of
rotorcraft accidents is approximately 2.5 times higher than that of fixed wing aircraft [5]. Thus
both safety and cost are motivating factors for the development of HUM and PHM systems.
1.2.1. Cost

Helicopter operating costs are extremely high. Maintenance accounts for 24% of this cost, and
insurance accounts for an additional 29% [4].
Placing rotorcraft maintenance on-condition would reduce the frequency of maintenance

inspections. In addition, healthy components would not need to be discarded at the end of their
estimated safe-life. Instead, they could remain in service until signs of failure are detected. Thus
CBM allows a reduction in part replacement and a decrease in the number of hours required for
maintenance, leading to a potentially significant reduction in maintenance costs.
Insurance costs are generally high due to large liability awards for accidents and high levels of

danger, both real and perceived, associated with helicopter flight. However, the continuous
monitoring of the condition of the rotorcraft means that a greater number of incipient failures will
be detected, thus reducing the accident rate and increasing both the real and perceived level of
safety. Hence, the implementation of CBM could yield a reduction in the insurance costs
associated with rotorcraft operation.
1.2.2. Safety
Over the years, the National Transportation Safety Board (NTSB) has collected an extensive

database of information on civil aviation accidents. From mid-1963 through 1997, they recorded a
total of 8436 rotorcraft accidents and presented a report on each. This database provides
invaluable information regarding the primary causes of rotorcraft accidents.
An exhaustive study of the NTSB helicopter accident reports from 1963 through 1997 was

presented by Harris et al. [6]. A summary of the accident count and distribution of commercially
manufactured helicopters over the period of the study is presented in Table 1.
The airframe/component/system failure/malfunction category covers the helicopter failures

which could most likely be avoided through the use of CBM. It can be seen that for each type of
helicopter, this category provides a moderately significant contribution to the total number of
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accidents. It should also be noted that within this category, drive train failures made the greatest
contribution to the overall number of accidents as seen in Table 2.
It can be seen from these studies that the use of CBM could have a significant impact on the

safety and reliability of rotorcraft.

1.3. Rotorcraft transmission health monitoring system

Because of the severe loading environment to which helicopters are subjected, helicopter
transmissions suffer from a variety of potential damage modes. These include characteristic
wearing patterns, scoring, fatigue cracks, pitting, spalling, housing cracks, bearing failures,
loosening mounting bolts, as well as a host of other failure modes. Some possible transmission
damage modes are displayed in Fig. 1. It should be noted that the damage shown in this figure is
Table 1

Summary accident count and distribution, 1963–1997 [6]

NTSB first event accident category Single piston Single turbine Twin turbine

Count (%) Count (%) Count (%)

Loss of engine power 1.554 (28.9) 704 (31.3) 39 (12.9)

In flight collision with object 953 (17.7) 298 (13.2) 43 (14.2)

Loss of control 625 (11.6) 284 (12.6) 40 (13.2)

Airframe/component/system failure/malfunction 639 (11.9) 282 (12.5) 89 (29.5)

Hard landing 483 (8.99) 140 (6.23) 8 (2.65)

In flight collision with terrain/water 443 (8.25) 143 (6.36) 8 (2.65)

Rollover/nose over 290 (5.40) 119 (5.29) 4 (1.32)

Weather 57 (1.06) 85 (3.78) 12 (3.97)

Other 327 (6.09) 192 (8.54) 51 (16.9)

Table 2

Airframe major system accident count and distribution, 1963–1997 [6]

Airframe major system Single piston Single turbine Twin turbine

Count (%) Count (%) Count (%)

Drive train—main 127 (19.9) 49 (17.3) 13 (14.6)

Drive train—tail 119 (18.6) 54 (19.1) 19 (21.3)

Main rotor 57 (8.9) 36 (12.6) 19 (21.3)

Tail rotor 124 (19.4) 52 (18.4) 10 (11.2)

Control system—main 63 (9.9) 29 (10.3) 11 (12.3)

Control system—tail 38 (5.9) 11 (3.9) 7 (7.9)

Airframe (fuselage, other subsystems) 64 (10.0) 41 (14.5) 8 (9.0)

Landing gear 24 (3.8) 2 (0.7) 2 (2.2)

Engine 7 (1.1) 3 (1.1) 0 (0)

Undetermined/other 16 (2.5) 5 (1.8) 0 (0)
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Fig. 1. OH-58A transmission faults [7]; (a) spalled sun gear; (b) scored spiral bevel pinion; (c) scored spiral bevel face

gear; (d) spalled planetary bearing race.
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the result of an advanced lubricant study where an OH-58 transmission mounted in a test rig was
run at 117% of the maximum rated load for an extended period of time [7]. If left unchecked,
many of these damage modes can lead to catastrophic failure of the transmission and thus the
entire helicopter.
Transmission monitoring is a significant part of any PHM system. As stated earlier, a PHM

system is composed of two components: prognostics and health management. For a transmission
health monitoring system, each of these components can be subdivided into a number of sub-
components, each with an associated supporting system or algorithm. A schematic of a
transmission health monitoring system is given in Fig. 2. During normal operation, the PHM
system acquires data from a number of sensors including accelerometers mounted to the
transmission housing and a one-per-rev reference signal. The diagnostic function provides
comprehensive integrated component-by-component mechanical diagnostics. The diagnostics
focus on individual gears, bearings and shafts. The prognostic function then provides a prediction
of the remaining life of each component. The condition of each component is monitored
constantly during flight to ensure vehicle safety.
The initial research in the area of transmission damage detection was focused on

vibration signal analysis, i.e. the analysis of transmission vibration signals using the
various tools available in the signal processing community. At first, the statistical characteristics
of the signal in the time domain were the primary focus of study. However, the field quickly
expanded to include spectral analysis, time–frequency analysis and wavelet analysis. This field is
continuing to grow. As new signal processing techniques emerge, they are applied to the
transmission damage detection problem and their merit as potential damage detection techniques
is assessed.
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In the late 1980s, model-based transmission damage detection techniques began to appear. This
approach is fundamentally different from the previous in that the technique is trained to recognize
signals from a healthy transmission and then indicate when the vibration signal deviates from this
nominal condition. Additionally, some techniques can be trained using data from both healthy
and damaged transmission. Different types of damage are used so that the system cannot only
detect the onset of damage, but also attempt to classify the type of damage that has occurred.
Training, also referred to as learning or adaptation is typically autonomous.
Research into model-based damage detection focused primarily on the application of pattern

classification (neural network) and mathematical modelling (autoregressive moving average)
techniques. Typically, neural networks and expert systems do not use the vibration signal directly;
instead, they are trained using the output from many vibration signal analysis techniques. In
addition, they are trained using a data set that includes signals from the transmission operating
under both healthy and damaged conditions. Mathematical modelling, on the other hand, models
the vibration signal directly, and typically only learns the characteristics of a healthy signal.
Wavelet-based adaptive signal processing, a technique that just recently has begun to receive the
attention of the transmission diagnostics community, can be placed under the heading of
mathematical modelling.

1.4. The promise of HUM systems

The promise of HUM systems is the ability to provide accurate information regarding the
condition of various flight critical components. In March 1993, the first success of a HUM system
was reported; a Stewart Hughes Ltd. HUM system detected its first serious problem in a
Norwegian Boeing 234 Commercial Chinook, preventing it from take-off. After a maintenance
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inspection, it was found that a 10mm bolt on a cross-shaft coupling between the engine and a
gearbox had broken. However, whether or not the broken bolt would have caused an accident was
not determined. Other successes have subsequently been reported in literature [1,4,8,9].
The following sections summarize many of the fundamental transmission damage detection

techniques presented in the literature over the past 25 years.
2. Statistical damage detection metrics

2.1. Theory

The traditional techniques for vibration-based transmission damage detection are typically
based on some statistical measurement of the energy of the vibration signal. For example, it was
observed that the rms energy of the vibration signal may change in the presence of damage.
However, in the mid 1970s, Stewart [10] began to more rigorously investigate the changes in a
transmission vibration signal due to gear damage. He made the observation that under no fault
conditions, a transmission vibration signal tends to be dominated by the mesh frequency and its
harmonics, referred to as the regular meshing components of the signal, and that a noise floor is
present which can generally be assumed to be Gaussian. He also noted the presence of sidebands
about the regular meshing components, spaced at the rotational frequency of the gear of interest.
Based on these observations, McFadden [11] proposed a basic mathematical model of the

transmission vibration signal. He stated that a signal from a perfect transmission can be
approximated by

xperfectðtÞ ¼
X1
n¼0

Pn cos ðnot þ fnÞ þ wðtÞ; (1)

where Pn is the amplitude of the nth harmonic, o is the mesh frequency given by o ¼ 2pf rT ; f r is
the gear rotation frequency, T is the number of teeth, fn is the phase angle of the nth harmonic,
and wðtÞ is the Gaussian white noise. However, imperfections in the manufacturing and assembly
of the transmission lead to amplitude and phase modulation of the signal. These modulations
have the effect of creating the sidebands about the regular meshing components. Thus, McFadden
noted that the amplitude modulation function anðtÞ and the phase modulation function bnðtÞ are
periodic with the gear rotational frequency f r and can be written as a sum of its harmonics as

anðtÞ ¼
X1
m¼0

Anm cosðmort þ anmÞ; bnðtÞ ¼
X1
m¼0

Bnm cosðmort þ bnmÞ; (2,3)

where or ¼ 2pf r: Substituting these modulation functions into xperfectðtÞ yields a more accurate
model of a transmission vibration signal, given as

xðtÞ ¼
X1
n¼0

Pn½1þ anðtÞ� cos ½not þ fn þ bnðtÞ� þ wðtÞ: (4)

Stewart [10] observed that in a healthy transmission, the amplitude of the sidebands, and thus the
amplitude of the modulation functions, was small. However, he noted that the presence of a fault
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superimposes additional dynamics upon this signal and that different types of faults have different
effects on the vibration signal. In major tooth faults, for example, the peak-to-peak value of xðtÞ
tends to increase. However, for heavily distributed damage, the peak-to-peak value can remain
rather constant while the amplitude of the mesh frequency and its harmonics, Pn; decrease. He
also made the important observation that the additional dynamics caused by the appearance of a
fault tend to significantly increase the amplitude of the sidebands, in particular, in the presence of
a local defect such as a single tooth failure. This corresponds to an increase in the amplitude of the
modulation functions in McFadden’s model.
To better observe the changes in the amplitude of the modulation functions, Stewart proposed

the formation of a difference signal d; the statistical properties of which could then be analyzed.
The difference signal is given as

d ¼ xðtÞ � ydðtÞ; (5)

where xðtÞ is the original time synchronous signal and ydðtÞ is the signal containing the mesh
frequencies, their harmonics and their first-order sidebands. Thus, according to McFadden’s
model, d is composed of the higher-order sidebands and Gaussian noise. Later, it was proposed
that the first-order sidebands need not be removed [12]. This led to the formation of the residual
signal, r; given as

r ¼ xðtÞ � yrðtÞ; (6)

where, in this case, yrðtÞ is the signal containing only the mesh frequencies and their harmonics.
These observations of the nature of the changes in the transmission vibration signal in the

presence of damage form the foundation of the statistical transmission damage detection metrics
which follow.

2.2. Diagnostic techniques

2.2.1. Root mean squared

The root mean squared (rms) [13] is defined as the square root of the average of the sum of the
squares of the signal samples and is given by

RMSx ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

i¼1

ðxiÞ
2

" #vuut ; (7)

where x is the original sampled time signal, N is the number of samples and i is the sample index.
The rms of a sine wave is defined as 0.707 times the amplitude of the signal.

2.2.2. Crest factor

The crest factor (CF) [14] is defined as the maximum positive peak value of the signal x divided
by RMSx and is given by

CF ¼
x0�pk

RMSx

; (8)

where pk is the sample index for the maximum positive peak of the signal and x0�pk is the value of
x at pk: CF is a normalized measurement of the amplitude of the signal and is designed to increase
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in the presence of a small number of high-amplitude peaks, such as those caused by some types of
local tooth damage.

2.2.3. Energy ratio
The energy ratio (ER) [14] is defined as the ratio of the RMS of the difference signal d and the

RMS of the signal containing only the regular meshing components, yd ; and is given by

ER ¼
RMSd

RMSyd

: (9)

ER is designed to increase in the presence of heavy uniform wear since it would be expected that in
this case RMSd would increase while RMSyd

would decrease.

2.2.4. FM0

The parameter FM0 was developed by Stewart in 1977 as a robust indicator of major faults in a
gear mesh [10]. Major changes in the meshing pattern are detected by comparing the maximum
peak-to-peak amplitude of the signal to the sum of the amplitudes of the mesh frequencies and
their harmonics. FM0 is given as

FM0 ¼
PPxPH
n¼0 Pn

; (10)

where PPx is the maximum peak-to-peak amplitude of the signal x;Pn is the amplitude of the nth
harmonic, and H is the total number of harmonics in the frequency range. Notice that in cases
where PPx increases while Pn remains relatively constant, FM0 increases. Also, if Pn decreases
while PPx remains constant, FM0 also increases.

2.2.5. Kurtosis

The kurtosis is the fourth normalized moment of a given signal x and provides a measure of
the peakedness of the signal, i.e. the number and amplitude of peaks present in the signal. It is
given by

Kurtosis ¼
N

PN
i¼1 ðxi � x̄Þ4

½
PN

i¼1 ðxi � x̄Þ2�2
: (11)

The fourth moment is normalized by the square of the variance. A signal consisting exclusively of
Gaussian noise will have a kurtosis of approximately 3.

2.2.6. Energy operator

The energy operator [15] is found by first calculating the value x2
i � ðxi�1 	 xiþ1Þ for every point

xi of the signal x. At the end points, the signal is assumed to be a continuous loop. The energy
operator is then computed by taking the normalized kurtosis of the resulting signal.

2.2.7. FM4

Developed by Stewart in 1977, the parameter FM4 was designed to complement FM0 by
detecting faults isolated to only a limited number of teeth [10]. This is accomplished by first
constructing the difference signal, d; given in Eq. (5). The normalized kurtosis of d is then
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computed. FM4 is given as

FM4 ¼
N
PN

i¼1 ðdi � d̄Þ4

½
PN

i¼1 ðdi � d̄Þ2�2
; (12)

where d̄ is the mean of the difference signal, and N is the total number of data points in
the time signal. FM4 is nondimensional and designed to have a nominal value of 3 if d is purely
Gaussian. When higher-order sidebands appear in the vibration signal, FM4 will deviate from this
value.

2.2.8. NA4

The parameter NA4 was developed in 1993 by Zakrajsek, Townsend, and Decker at the
NASA Lewis Research Center as a general fault indicator which reacts not only to the onset of
damage as FM4 does, but also to the continuing growth of the fault [12]. The residual signal r;
given in Eq. (6), is first constructed. The quasi-normalized kurtosis of the residual signal is then
computed by dividing the fourth moment of the residual signal by the square of its run time
averaged variance. The run time averaged variance is the average of the residual signal over each
time signal in the run ensemble up to the point at which NA4 is currently being calculated. NA4 is
given as

NA4ðMÞ ¼
N
PN

i¼1ðriM � r̄MÞ
4

f 1
M

PM
j¼1 ½

PN
i¼1ðrij � r̄jÞ

2
�g2

; (13)

where r̄ is the mean of the residual signal, N is the total number of data points in the time signal,
M is the number of the current time signal, and j is the index of the time signal in the run
ensemble. Like FM4, NA4 is nondimensional and designed to have a nominal value of 3 if r is
purely Gaussian.

2.2.9. M6A

The parameter M6A was proposed by Martin in 1989 as an indicator of surface damage on
machinery components [16]. The underlying theory is the same as that of FM4. However, it is
expected that M6A will be more sensitive to peaks in the difference signal due to the use of the
sixth moment. M6A is given as

M6A ¼
N2

PN
i¼1 ðdi � d̄Þ6

½
PN

i¼1 ðdi � d̄Þ2�3
: (14)

Note that in this case, the moment is normalized by the cube of the variance.

2.2.10. M8A
The parameter M8A, also proposed by Martin in 1989, is designed to be yet more sensitive than

M6A to peaks in the difference signal [16]. M8A uses the eighth moment normalized by the
variance to the fourth power and is given as

M8A ¼
N3

PN
i¼1 ðdi � d̄Þ8

½
PN

i¼1 ðdi � d̄Þ2�4
: (15)
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It should be mentioned that increased sensitivity to peaks is not necessarily a desired property in
that an excessively sensitive parameter will yield many false alarms. Hence, the choice of damage
indicator is not related exclusively to sensitivity.
2.2.11. NB4

The parameter NB4 was developed by Zakrajsek, Handschuh and Decker in 1994 as an
indicator of localized gear tooth damage [17]. The theory behind NB4 is that damage on just a few
teeth will cause transient load fluctuations different from those load fluctuations caused by
healthy teeth, and that this can be seen in the envelope of the signal. As with NA4, NB4 uses the
quasi-normalized kurtosis. However, instead of the difference signal, NB4 uses the envelope of the
signal band-pass filtered about the mesh frequency. The envelope, s is computed using the Hilbert
transform and is given by

sðtÞ ¼ j½bðtÞ þ i½HðbðtÞÞ��j; (16)

where bðtÞ is the signal band-pass filtered about the mesh frequency, HðbðtÞÞ is the Hilbert
transform of bðtÞ; and i is the sample index.
2.2.12. NA4*

The parameter NA4	 was developed in 1994 by Decker, Handschuh and Zakrajsek as an
enhancement to NA4 [18]. In this case, the denominator of NA4 is statistically modified, i.e. when
the variance of the residual signal exceeds a certain statistically determined value, the averaging
stops and the denominator is locked. This modification was made based on the observation that
as damage progresses from localized to distributed, the variance of the signal increases
significantly, causing the kurtosis to settle back to nominal values after the initial indication of the
onset of damage. By normalizing the fourth moment by the variance of a baseline signal from the
transmission operating under nominal conditions, NA4	 is provided with enhanced trending
capabilities.
Since it was observed that the variance of a damaged transmission signal is greater than that of

a healthy transmission signal, the decision to lock the denominator is made based on an upper
limit, L; given by

L ¼ v̄ þ
Zffiffiffiffiffi
N

p s; (17)

where v is the mean value of previous variances, Z is the probability coefficient usually chosen for
a normal distribution, s is the standard deviation of the previous variances, and N is the number
of samples. Z for a normal distribution can be found in any introductory statistics text. However,
the actual choice of Z should be made based on experimentation as too small a value could lead to
an over abundance of false alarms.
2.2.13. NB4*, M6A* and M8A*

As with the parameter NA4	; the parameters NB4	 [19], M6A	 [13] and M8A	 use the
statistically modified average variance to normalize their respective moments.
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Fig. 3. Bulls-eye plots of Wessex main rotor gear box (WAK143) input pinions [22]; (a) undamaged. (b) 103 h prior to

failure.
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2.2.14. Demodulation

The original observation made by Stewart [10] that gear tooth damage causes an increase in the
amplitude of the sidebands about the regular meshing components led to further investigations
into the nature of the amplitude and phase modulation functions. It was proposed that the
vibration signal could be demodulated to obtain separate approximations of the amplitude and
phase modulation functions and that these approximations could subsequently be inspected to
find early indications of gear damage [20,21]. This work was further refined by Blunt and
Forrester [22] to produce a useful damage indicator referred to as a bulls-eye plot which indicates
both amplitude and phase demodulations simultaneously. Fig. 3(a) shows a bulls-eye plot for a
Wessex WAK143 main rotor gear box operating under healthy conditions, and Fig. 3(b) shows
that for the same gear box with a cracked input pinion 103 h prior to complete failure. Note that
the inner, middle, and outer regions of the plot indicate safe, caution and danger regions of
operation, respectively. These figures clearly illustrate the changes in modulation due to damage.
3. Time–frequency analysis

3.1. Theory

In the late 1980s, investigations into the joint time–frequency characteristics of transmission
vibration signals were begun [23]. It was observed that local gear faults such as spalling on a
limited number of gear teeth produce sharp transients in the vibration signal of a transmission.
The statistical damage detection metrics tend to have an underlying assumption of signal

stationarity and thus provide information about a signal which is averaged over time. As a result,
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the effect of local transient phenomena can be lost. On the other hand, nonstationary techniques
provide information about the local time-domain properties of a signal. In general, a transmission
vibration signature consists of three significant components: a sinusoidal component due to time
varying loading, a broad-band impulsive component due to impact, and random noise. For an
undamaged transmission, the sinusoidal components dominate. However, as damage propagates
through the system, the sinusoidal components exhibit both modulation and reduction in
amplitude [20,24]. In addition, both the broad-band impulsive components and the random noise
become more prevalent [25]. It can be seen that the trends exhibited by the sinusoidal components
are most visible in the frequency domain; the trends exhibited by the broad-band impulsive
components are most visible in the time domain. Thus, in order to capture these trends,
nonstationary, time–frequency analysis techniques are deemed appropriate [26].
Initial research into the use of joint time–frequency signal processing techniques for

transmission damage detection was focused primarily on two of the standard time–frequency
analysis techniques available in the signal processing community, the spectrogram and the
Wigner–Ville distribution (WVD).
The spectrogram is the squared magnitude of the short-time Fourier transform (STFT) and

provides the energy density spectrum of the signal as a function of time [27]. To investigate the
frequency domain properties of a signal about time t; the signal xðtÞ is first multiplied by a window
function hðtÞ; centered at t: This leads to the formation of a windowed signal given as

xtðtÞ ¼ xðtÞhðt� tÞ: (18)

The window function is chosen such that

xtðtÞ �
xðtÞ for t near t;

0 for t far from t:

	
(19)

The STFT about time t is the Fourier transform of xtðtÞ; given as X tðoÞ; and the energy density
spectrum about time t is the squared magnitude of X tðoÞ: Thus, the energy density spectrum
about time t is given as

PSPðt;oÞ ¼ jX tðoÞj2 ¼
1ffiffiffiffiffiffi
2p

p

Z
e�jot xðtÞhðt� tÞdt

����
����
2

: (20)

For each time t; a different spectrum is obtained. These spectra can be combined to form the
time–frequency distribution PSP referred to as the spectrogram.
The WVD is a qualitatively different distribution than the spectrogram, even though it falls into

the same general class of representations [27]. To obtain the WVD at time t; take the sum of the
product of the signal before time t; xðt � 1=2tÞ and the reversed signal after time t; xðt þ 1=2tÞ:
The reversal of the signal after t ensures that at time t; the points being multiplied are equidistant
in time from t; specifically �1=2t: Thus the WVD is given as

W ðt; tÞ ¼
1

2p

Z
x	ðt � 1=2tÞxðt þ 1=2tÞe jto dt: (21)

Effectively, the computation of the WVD at time t can be thought of as folding the signal onto
itself at t and determining if there is any overlap. It should be noted that times far from t are
weighted equally with times near t. Thus the WVD is highly nonlocal.
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An important property of the WVD that must be mentioned is the presence of cross-terms.
Consider the WVD of the sum of two signals

xðtÞ ¼ x1ðtÞ þ x2ðtÞ: (22)

Substituting Eq. (22) into Eq. (21) it can be seen that

W ðt;oÞ ¼ W 11ðt;oÞ þ W 22ðt;oÞ þ W 12ðt;oÞ þ W 21ðt;oÞ (23)

and given that W 12ðt;oÞ ¼ W 	
21ðt;oÞ; it is evident that

W 12ðt;oÞ þ W 21ðt;oÞ ¼ 2RefW 12ðt;oÞg; (24)

where 2RefW 12ðt;oÞg is referred to as the cross-term. Thus

W ðt;oÞ ¼ W 11ðt;oÞ þ W 22ðt;oÞ þ 2RefW 12ðt;oÞg: (25)

From Eq. (25) it can be observed that any signal which can be composed of the sum of two signals
may have cross-terms present in the distribution. While these terms may be useful in some cases,
e.g. for the identification of multicomponent signals [27], they tend to interfere with the
interpretation of the distribution of transmission vibration signals. Despite this limitation, the
WVD has been demonstrated to have utility in the transmission diagnostics.
The spectrogram and the WVD have both been investigated as potential time–frequency

analysis tools for transmission diagnostics. These investigations are summarized below.

3.2. Diagnostic techniques

A significant advancement in the field of transmission diagnostics was made when Forrester
introduced the use of time–frequency analysis of transmission vibration signals [23,28]. In this
pioneering work, he used the WVD to process vibration data from a damaged Royal Australian
Navy Wessex helicopter main rotor transmission. It was demonstrated that the WVD of the signal
average, with no further enhancements or filtering, was able to reveal the fault. Fig. 4 shows the
WVD for a Wessex WAK143 main rotor gear box with a cracked input pinion 42 h prior to
failure. The disturbance around a frequency of 44 shaft-orders near a shaft angle of 100� is a result
of the damage.
This work was followed by McFadden in the early 1990s. He investigated the properties of the

WVD for both continuous and discrete signals [29]. Specifically, he investigated the effect of the
cross-terms on the distribution computed from a transmission vibration signal. He subsequently
applied the WVD to experimentally obtained time-domain averages of the vibration of damaged
gears in a helicopter transmission, in order to detect early signs of damage. It was shown that the
damage to the gears can be detected by visual inspection of the changes occurring in the pattern of
the WVD.
Further research by McFadden demonstrated that the application of sliding weighting

functions to the WVD could reduce the effect of the cross-terms [30,31]. Subsequently, he showed
that gear damage in a helicopter transmission can be more easily detected by visual inspection of
the changes occurring in the pattern of the weighted WVD more easily than they could with the
original WVD.
Additional assessment of the WVD as a transmission damage detection technique was

performed at the NASA Glenn Research Center [32,33]. They concluded that the WVD provided
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Fig. 4. WVD plot of Wessex transmission 42 h prior to failure [22].
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vital information regarding the location and severity of gear tooth damage. Since this early work,
a number of variances of the WVD have been investigated [34]. Research into the WVD
ultimately led to the development of the gear diagnostic parameter NP4 [35,36]. The creation of a
diagnostic parameter is desirable as it eliminates the requirement for visual inspection and
interpretation of the distribution, enabling the use of a threshold for damage detection.
The parameter NP4 is the normalized kurtosis of the instantaneous signal power, PxðtÞ as

computed using the WVD. The instantaneous signal power is given as

PxðtÞ ¼

Z
jW ðt;oÞjdo: (26)

Thus, the parameter NP4 can be defined as

NP4 ¼
N

PN
i¼1ðPi � P̄Þ4

½
PN

i¼1ðPi � P̄Þ2�2
; (27)

where i is the sample index, Pi is the instantaneous signal power at sample index i; P̄ is the mean of
P; and N is the total number of data points in the time signal. NP4 is nondimensional and depends
only on the shape of the power distribution.
Soon after the potential of time–frequency analysis was demonstrated through the use of the

WVD, research began into the application of the spectrogram. McFadden applied the
spectrogram to the calculation of the time–frequency distribution of a transmission vibration
signal [37]. The selection of the window function was investigated, and the Gaussian function was
found to be well suited to the calculation of the distribution. The spectrogram was then used to
analyze experimentally obtained vibration signals from an industrial gearbox. McFadden
concluded that the spectrogram was a potentially useful tool for the early detection of local gear
damage. Further work demonstrated that the spectrogram could be treated as an image and that
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Fig. 5. Modified spectrogram plot of Wessex transmission 42 h prior to failure [39].
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fault detection could then be accomplished using image processing techniques for feature
extraction [38].
Subsequent research into the spectrogram was performed by Forrester in the mid 1990s [39].

He demonstrated that a modified spectrogram could be as sensitive to transmission faults
as the WVD while eliminating the effect of the cross terms. Fig. 5 shows the modified spectrogram
for a Wessex WAK143 main rotor gear box with a cracked input pinion 42 h prior to failure.
Note that the modified spectrogram indicates damage more clearly than the WVD, shown
in Fig. 4.
4. Wavelet analysis

4.1. Theory

The advent of wavelet analysis in the mid 1980s provided a new and powerful tool for the
analysis of the joint time–frequency characteristics of transmission vibration signals. The wavelet
transform is a time–frequency analysis method similar to the WVD, though it is independent of
time and thus can truly describe local behavior. Although wavelet analysis falls under the general
heading of time–frequency analysis, it merits an independent section due to the large volume of
research into its use as a diagnostic technique.
Unlike the Fourier transform, where stationary complex basis functions are used to map the

temporal signal into the frequency domain, the wavelet transform uses a new class of real and
complex nonstationary basis functions, termed wavelets, which can be independently dilated and
shifted as a function of time, to create a unique time–frequency map. The advantage of this
method is that the frequency content of the signal can be analyzed without the loss of vital
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time-domain information. In addition, time and frequency are independent. Thus, the
time–frequency representation is not affected by cross-terms.
The roots of the wavelet transform reach back to the development of quadrature mirror filters

(QMF) in the signal processing community [40–44]. In the mathematics community, the classical
definition of wavelets as translations and dilations of a single basis function was inaugurated in
several key references [45–48]. The introduction of the fast wavelet transform and multiresolution
analysis (MRA) provided a link between wavelets and QMFs [47,49,50]. This work laid the
foundation for further development of wavelet theory [46,51,52].
The wavelet transform is a signal processing tool which allows both the time- and frequency-

domain properties of a signal to be viewed simultaneously. At first glance this would seem to
violate the uncertainty principle which states that, for a signal xðtÞ; the time density jxðtÞj2 and
frequency density jX ðoÞj2 cannot be made arbitrarily narrow simultaneously [27]. However,
wavelet analysis offers a tradeoff: some loss of density in both time and frequency is tolerated so
that time and frequency domain properties of the signal can be analyzed concurrently.
Performing a wavelet transform consists of convolving a signal with time shifted and

dilated versions of a nonstationary wavelet basis function. Let the function clðtÞ be defined
as a wavelet, where l belongs to some set of indices L and describes the translation and dilation
of the wavelet. Then the basis C is given as C ¼ fcljl 2 Lg: After a basis has been chosen,
the signal x can then be represented as a combination of wavelets, referred to as a wavelet series
and given as

x ¼
X
l

clcl (28)

with c ¼ fcljl 2 Lg: The result of this process is a set of coefficients cl which are a function of time
and frequency, or time and scale. Note that the change in scale of a wavelet, referred to as
dilation, corresponds to a change in frequency; as a wavelet is dilated, i.e. stretched, its frequency
decreases. The coefficients obtained from the wavelet transform can be used to form a mean
square wavelet map which is a time–frequency representation of the energy of a signal. In
addition, the coefficients computed as a wavelet of a fixed dilation is shifted along the time signal
can be used to construct a new time signal. This new time signal will contain only those frequency
components included in the wavelet. The continuous wavelet transform (CWT) requires that these
coefficients be computed over all time and frequency. However, it has been found that if the
dilation and position of the wavelets are chosen to be powers of two, then the transform can be
computed much more efficiently with no loss of accuracy. This form of the wavelet transform is
known as the discrete wavelet transform (DWT). It should be noted that the CWT is a non-
orthogonal transformation whereas the DWT is orthogonal.
In general, wavelet basis functions, including the standard set developed by Daubechies [46],

cannot be represented analytically, and thus even the DWT is computationally inefficient.
However, in 1989, Mallat [49] presented a relatively fast, recursive algorithm for computing the
DWT. This algorithm uses the wavelet basis function to form sets of filters, each consisting of a
high-pass filter and a lowpass filter. The signal under consideration is then passed through the first
set of these filters and downsampled. The result is two signals, each with about half the number of
coefficients as the original signal. The first of these signals, which was formed using the lowpass
filter and which consequently contains the low-frequency information, is referred to as the
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approximation ðA1Þ: The second signal, which was formed using the highpass filter and which
consequently contains the high-frequency information, is referred to as the detail ðD1Þ: For the
second recursion, the approximation is passed through the next set of highpass and lowpass filters,
again based on the wavelet basis function, yielding a second approximation ðA2Þ and detail ðD2Þ:
This decomposition can be repeated until an approximation and detail, each consisting of only
one coefficient, are formed.
Research into the use of the wavelet transform for transmission diagnostics has focused

primarily on the assessment of the performance of various basis functions and various forms of
the transform. Typically, a set of vibration signals is analyzed by the technique under
consideration and the resulting distribution is visually inspected to determine whether changes
due to damage are evident. However, research is beginning to focus on more intelligent
applications of wavelets in an attempt to exploit the flexibility offered by the transform. Over the
past 10 years, many papers have focused on the use of the wavelet transform for transmission
diagnostics. A selection of significant research is summarized below.

4.2. Diagnostic techniques

Initial investigations into the use of the wavelet transform for transmission diagnostics began in
the early 1990s [53–55], soon after research into the spectrogram and WVD demonstrated the
potential of joint time–frequency vibration signal analysis techniques. This early research showed
that the wavelet transform had the potential to out-perform the earlier time–frequency analysis
techniques when applied to the problem of transmission diagnostics.
Ensuing investigations focused on the choice of basis function and the merits of the CWT

versus the DWT. A comparison of compact and smooth wavelets for transmission fault detection
was presented in 1995 by Wang and McFadden [56]. Generally, compact wavelets are not smooth
and as a result tend to be better for lower accuracy approximations. On the other hand, smooth
wavelets are better for achieving high numerical accuracy in signal reconstruction [57]. Both the
highly compact Daubechies 4 wavelet and a smooth wavelet known as the harmonic wavelet,
developed by Newland [58–60], were used in conjunction with the DWT to process vibration
signals from a Westland helicopter transmission. It was demonstrated that the harmonic wavelet
was slightly better suited to fault detection than the Daubechies 4 wavelet. However, Wang and
McFadden determined that, for transmission damage detection, the nonorthogonal CWT with
a Gaussian enveloped oscillation as a basis was more effective than the orthogonal DWT used
with either the Daubechies or harmonic basis. The resulting work with the CWT was reported in
1996 [61].
Further investigation into the harmonic wavelet was performed by Samuel and Pines [62,63]. It

was shown that in conjunction with the wavelet packet transform and some a priori knowledge of
the fundamental frequencies of the transmission under consideration, the harmonic wavelet could
be used to monitor the energy of the regular meshing components and the sidebands as a function
of time. This research led to the development of a wavelet-based damage detection metric referred
to as the normalized energy metric (NE) [26,64,65]. NE was based on the observation that with the
onset of damage, energy tends to transfer from the regular meshing components to the sidebands.
It was shown that NE could be used to detect and classify certain types of gear damage in
helicopter transmissions.
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The evaluation of the wavelet transform as a transmission diagnostic technique is an ongoing
field of research. As new wavelet techniques emerge from the signal processing, image processing
and mathematics communities, their merit as a potential part of a transmission diagnostic system
is assessed. Many variations on the wavelet transform have been investigated and the results
presented in the literature. A selection of these more recent investigations is included in the
bibliography [24,66–71].
5. Neural networks

5.1. Theory

The majority of diagnostic techniques presented in the literature have demonstrated some
ability to indicate the presence of damage in a transmission. However, each technique has
associated strengths and limitations and is usually suited to the detection of a limited number of
fault types. Thus, any one technique is generally insufficient for detecting all of the various types
of damage that could occur in a transmission.
Model-based techniques offer a fundamentally different approach to the problem of

transmission damage detection. The fundamental idea is that the technique is trained to
recognize signals from a healthy transmission and then indicate when the vibration signal deviates
from this nominal condition. In addition, some measure of the nature of the deviation can often
be indicated, thus potentially enabling the type of damage to be determined.
Neural networks are the most commonly used technique for model-based diagnostics. A neural

network is defined as a massively parallel distributed processor that has a natural propensity for
storing experiential knowledge and making it available for use [72]. It possesses two fundamental
properties: (1) the network obtains knowledge through a learning process, and (2) the interneuron
connection strengths or weights are used to retain the knowledge. The fundamental theory
underlying neural networks is extensive and has been well documented in numerous books and
papers in the literature [72,73].
In general, a neural network damage detection system does not process the vibration signal

directly. Instead, it takes as input the results of various processing techniques, learning how the
techniques behave in the presence of healthy and faulty data. For example, vibration data could
be processed using the statistical metrics presented above, and the output of these techniques
could then be used as input for the network. This would allow the network to take advantage of
the strength of each individual damage detection technique. The resulting trained network acts as
a model of the transmission vibration data, and can be used to detect abnormalities in the signal
associated with damage. In addition, neural networks offer the added benefit of fault classification
as long as the processed data behaves differently in the presence of different types of damage.
Two standard neural network architectures are used in transmission diagnostics. These are the

feed-forward backpropagation network and the Kohonen feature map, also referred to as the self
organizing map (SOM).
The feed-forward backpropagation neural network, more simply referred to as the back-

propagation network, typically consists of multiple layers of interconnected nodes: the input
layer, one or more hidden layers, and the output layer. A diagram of the architecture of a typical
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backpropagation network is shown in Fig. 6. The backpropagation network can be trained using
healthy data and data from different types of faults. It can then be used to determine the condition
of future data, and classify any detected faults. If designed and trained correctly, a
backpropagation network has the ability to generalize [72], which could allow the network to
indicate the presence of faults slightly different from those encountered in the training set. This
property could be particularly useful when multiple faults are encountered simultaneously.
Training a backpropagation network must be supervised, i.e. when a training data set is input, a
corresponding target output must also be provided.
The Kohonen feature map, on the other hand, uses unsupervised learning. It consists of two

layers of nodes: an input layer and an output layer. The output layer takes the form of a two-
dimensional grid and each grid node is connected to every node of the input layer. A diagram of
the architecture of a typical Kohonen feature map is shown in Fig. 7. The organization of the
Fig. 6. Backpropagation network [73].

Fig. 7. Kohonen feature map [73].
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training set is determined by the network. Data sets with different properties are mapped to
different locations on the output grid. Unsupervised learning is a desirable property as it simplifies
the training process. However, the backpropagation network is more powerful for classification.
Both architectures are commonly used in neural-network-based diagnostic systems. A selection

of significant research into the use of neural networks for damage detection is summarized below.

5.2. Diagnostic techniques

In 1993, Harris proposed the use of the SOM for the detection and classification of damage in
rotating machinery [74]. Input to the network consisted of frequency spectrum values at salient
operating frequencies of the machine under consideration. Only data from the machine operating
under nominal conditions was used for training. It was shown that the network could distinguish
between vibration signals obtained from the machine under healthy and damaged conditions. In
addition, it was proposed that limited damage classification could be performed if the network
was trained using both healthy and faulty data. However, it was noted that faulty data are often
difficult to obtain.
Subsequent work by MacIntyre et al. demonstrated that backpropagation neural networks

could be used to effectively detect and classify damage in rotating machinery [75]. Just as in the
work of Harris, salient frequency spectrum values were used as input and excellent classification
performance was reported. However, the requirement for supervised learning was noted as a
limitation of the system. Hence, the SOM was again investigated. This technique proved useful for
the detection of faults, however, the inability to classify faults was noted as a limitation. Finally,
the use of a hybrid neural network architecture was proposed. For this system, the output of the
SOM would be used as input for the backpropagation network. It was suggested that this hybrid
network could address the limitations associated with each individual neural network.
In 1996, Lopez et al. [76] demonstrated that helicopter transmission damage detection and

classification could be performed by a backpropagation neural network-based diagnostic system.
Input for the system was vibration data processed using the continuous wavelet transform. It was
shown that for multiple sensors, a network could be trained for each sensor, and then a separate
back-propagation neural network, termed a hierarchical neural network, could be used to
perform sensor fusion and make a final decision regarding the health of the transmission.
The hybrid neural network architecture proposed by MacIntyre et al. [75] has become the most

commonly used architecture for transmission damage detection and classification. Recent work by
Essawy et al. demonstrated that a hybrid neural network architecture could be used to detect
damage in a helicopter transmission [77]. Multiple sensors were located at various positions on the
transmission housing. A neural network was trained for each sensor using vibration data that was
preprocessed using the wavelet transform. The output from each network was then fed into a
fuzzy logic-based sensor fusion algorithm which would make the final decision regarding the
condition of the gearbox. Excellent classification results were reported. Also, in 2001, a hybrid
neural network architecture was used by Samuel and Pines to demonstrate that the Normalized
Energy (NE) damage detection metric, a metric based on the wavelet transform, could be used as
input for a neural-network-based damage detection technique [65].
Investigations into the use of other neural network architectures for damage detection and

classification have also been presented. In 1991, Chin and Danai [78,79] proposed a fault detection
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and classification system based on a nonparametric classifier that used a multi-valued influence
matrix (MVIM) as its diagnostic model. This technique constitutes a simple neural network
architecture that incorporates a fast learning algorithm based on error feedback so that only a
limited training set is necessary. The MVIM provides indices describing both the level of diagnosis
possible for the process and variability of the fault signatures. These indices are used as feedback.
The MVIM is trained using an extensive set of statistical fault indicators and supervised learning
is required. Further research into this technique demonstrated its potential as a damage detection
and classification system [80–82]. Subsequent work by Jammu et al. [83–85] resulted in the
development of an unsupervised diagnostic system referred to as a structure-based connectionist
network (SBCN). The connectionist network used in this research consists of a single layer
neural network. Weights are influenced by both the features associated with damage,
termed featural influences, and the proximity of the sensor under consideration to the
potentially faulty component, termed structural influences. Once again, the input to the network
consisted of an extensive set of statistical indicators, computed from vibration data collected from
multiple sensors on a healthy gearbox. The SBCN was shown to be more versatile than the MVIM
method at detecting and classifying transmission faults since it does not depend on supervised
learning.
6. Mathematical modelling

6.1. Theory

The idea behind mathematical modelling techniques is similar to that of neural network
techniques. If vibration data collected from a healthy transmission can be sufficiently modelled,
then the model can be used to filter vibration data collected from the operational transmission to
indicate changes in the vibration signal due to damage. The primary ideological difference
between mathematical modelling diagnostic techniques and neural network techniques is the form
in which the data is input. As show above, neural network techniques are typically trained on data
that have been somehow preprocessed, e.g. on the output of many different diagnostic metrics and
signal processing techniques. On the other hand, mathematical modelling diagnostic techniques
process the vibration data directly.
There are two primary mathematical modelling techniques that have been applied to

transmission diagnostics. These are autoregressive (AR) modelling and autoregressive moving
average (ARMA) modelling. ARMA modelling is a generalization of AR modelling. Both
techniques are referred to as parametric spectral estimation procedures, and were developed to
compute high-resolution spectral estimations of data for which a sufficiently long time record is
difficult or impossible to acquire [86].
An AR model seeks to represent a time series x by a linear regression of x on itself plus an error

series assumed to be noise with a Gaussian distribution. This model is given as

xi ¼ �
Xp

k¼1

akxi�k þ ei; (29)
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where p is the number of past inputs required to sufficiently model the signal, referred to as the
model order, ak are the AR coefficients, i is the sample index, and ei is the Gaussian error series.
The frequency response function HðzÞ of the linear system is then given as

HðzÞ ¼
1

1þ
Pp

k¼1 akz�k
; (30)

where z ¼ expð�j2pfDtÞ is the z transform. This is referred to as an AR model of order p. The
model order p must be determined experimentally. Once the model order is selected, one of a
number of algorithms may be used to determine the AR coefficients. Many algorithms are
available in the literature; a summary of the fundamental techniques is provided by Rofe [87], and
a list of more advanced techniques is presented by Zhuge et al. [88]. The choice of algorithm is a
topic of research. It is also interesting to note that an AR model can be interpreted as a single
layer neural network [89].
An ARMA model is a generalization of the AR model. The frequency response function given

in Eq. (30) can more generally be given as

HðzÞ ¼
1þ

Pq
k¼1 bkz�k

1þ
Pp

k¼1 akz�k
: (31)

The resulting data sequence model is given by

xi ¼ �
Xp

k¼1

akxi�k þ
Xq

k¼0

bkei�k: (32)

This is referred to as an ARMA model of order p and q. Note that if all bk are zero except b0; then
the ARMA model reduces to the AR model. If all ak are zero, then the model reduces to the
moving average (MA) model. The coefficients bk are referred to as the MA coefficients. It has
been established that determination of the AR coefficients is a linear problem whereas
determination of the MA coefficients is a nonlinear problem [90,91] since the model error
bkei�k and hence the MA coefficients bk cannot be computed until the model has been fitted and
the AR coefficients have been determined. Thus, the AR technique has an computational
advantage over the ARMA technique. Once the model order and model coefficients have been
determined, the model must be validated.
Mathematical modelling has received minimal attention by the transmission diagnostic

community. However, interest in the technique is beginning to grow. The significant research is
summarized in the following section.
6.2. Diagnostic techniques

Initial consideration of AR modelling for rotating machinery diagnostics was presented by
Gersch et al. in 1983 [92]. In this study, a nearest-neighbor time series classification rule
methodology was developed. AR modelling was used to compute the dissimilarity measure
between a vibration signal collected under a known operating condition and one collected under
an unknown operating condition. Once the dissimilarity measures were determined, the nearest-
neighbor rule methodology could be used to classify the damage. Satisfactory classification results
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were reported. In 1985, Kitagawa and Gersch [93] presented a more in-depth consideration of AR
modelling. This work investigated a time varying coefficient AR model approach for the
modelling of nonstationary covariance time series. It was shown that complex time varying
earthquake data could be characterized locally in time. It was then proposed that the technique
could be used for machine diagnostics as it would enable the instantaneous spectra of a vibration
signal to be estimated and inspected.
This research was extended by Zhuge et al. in 1990 [88] through a comparison between a time

varying and time invariant techniques for AR coefficient estimation. The time varying technique
investigated was based on Kalman filtering theory. This technique was found to be very expensive
computationally. In comparison, the time invariant technique based on the assumption of local
stationarity of the signal was found to be computationally inexpensive and thus fast to realize.
More recently, Ballie and Mathew presented a comparison of AR modelling, backpropagation

neural networks and radial basis function networks for detecting faults in rolling element bearings
[89]. For this study, the AR model coefficients were determined using a forward least squares
algorithm. It was reported that the neural network technique generally outperformed the other
two.
Rofe investigated ARMA modelling as a technique for fault detection that would compensate

for changes in the transmission operating load [87]. It was shown through simulation that the
ARMA modelling technique could effectively detect faults while compensating for load
variations. This work was extended to AR modelling by Wang and Wong [94]. It was
demonstrated through an analysis of vibration data collected from a transmission test rig that the
AR modelling technique could be used to compensate for load variation while detecting gear
faults. The computational advantages of AR modelling over ARMA modelling were discussed.
In 1997, Garga et al. proposed that for gear fault detection, only a small set of AR model

coefficients was necessary [95]. It was demonstrated that the application of dimension reduction to
the AR coefficient prior to diagnosis could significantly reduce the complexity of damage
detection systems without a reduction in performance.
7. Adaptive signal processing

7.1. Theory

The advent of adaptive signal processing techniques enables the development of diagnostic
techniques that combine both model-based techniques and joint time–frequency signal processing-
based techniques. Specifically, the adaptive wavelet transform allows a given vibration signal to be
analyzed using a set of wavelet basis functions chosen from a set of functions, termed a dictionary,
consisting of multiple bases. The wavelet that best represents the signal at each point is chosen.
This adaptation property enables the creation of a general diagnostic algorithm that is able to
tailor itself to a specific transmission, thus potentially enhancing sensitivity to damage. Hence, a
change in perspective is suggested for wavelet-based diagnostic algorithms: instead of using the
wavelet transform to exclusively investigate changes in the characteristics of a vibration signal, a
set of wavelets can be chosen that best represent a signal obtained from a known operating
condition. This set of bases can then be compared to a signal obtained from the transmission
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during use and can thus be considered to be an empirical model of the transmission vibration
signal. This approach is similar to that taken by AR- and ARMA-based diagnostic techniques. It
should be noted that these adaptive signal processing techniques fall into the category of
mathematical modelling along with AR and ARMA modelling. However, the flexibility of the
wavelet transform allows more control over the adaptation process.
The goal of an adaptive representation algorithm is to find an approximation of a signal, in

terms of a given over-complete dictionary of waveforms, that optimizes a desired characteristic. In
an over-complete dictionary, some elements may have representations in terms of other elements
and, as a consequence, any given signal representation is nonunique. Thus, the representation is
referred to as adaptive, since there is the option of choosing the representation that best suits the
application. Consider an over-complete dictionary D of waveforms fk where k 2 Z: Then, let F be
the over-complete dictionary D made up of N bases Cb; b ¼ 1; . . . ;N: Then the waveform fk is a
wavelet cl;b where l 2 L and L is a two dimensional set of integers in Z2 with l ¼ ðj; lÞ: An
approximate, nonunique decomposition of a signal x formed using m wavelets, fk with k ¼

1; . . . ;m is then given as

x ¼
Xm

k¼1

ckfk þ RðmÞ; (33)

where ck is the coefficient describing the waveform fk and RðmÞ is the residual, the difference
between the signal approximation and the original signal. In general, no restrictions are placed on
D. For example, D could be composed of a combination of many smaller dictionaries. The result
is a method for obtaining signal representations that is significantly more flexible than the classical
wavelet transform. In addition, the resulting representations should be more sparse and thus more
physically meaningful than typical wavelet transform representations. Consider a dictionary of
wavelets constructed from transmission vibration data as mentioned in the previous section. Such
an algorithm could decompose the vibration signal into a series of waveforms associated with
either undamaged or damaged transmission components.
A number of methods for obtaining signal representations in over-complete dictionaries have

been developed in recent years. These include the Method of Frames [96], Matching Pursuit [97],
High Resolution Pursuit [98], and Basis Pursuit [99]. However, the majority of these techniques
have yet to be applied to transmission diagnostics.
7.2. Diagnostic techniques

To date, minimal research has been focused on the use of adaptive signal processing techniques
for transmission diagnostics. Liu and Ling [100] have shown that an extension of the Matching
Pursuit algorithm in conjunction with a combination of classical wavelet dictionaries has the
potential to be more effective than a single dictionary for rotating machinery diagnostics.
More recently, Samuel and Pines demonstrated that an adaptive version of the lifting scheme

could be used to analyze individual tooth mesh waveforms in order to detect the presence of
damage in a transmission [101]. The lifting scheme, a time-domain prediction-error realization of
the wavelet transform, was developed by Wim Sweldens in the early 1990s as a method for
creating new biorthogonal wavelets in settings where the Fourier transform could not be used
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[102–104], such as on bounded domains and on curves and surfaces. Connections are cited
between lifting and other independent research, particularly the work of Herley and Vetterli [105].
In later work, Sweldens and Daubechies demonstrated that all perfect reconstruction filterbanks
could be formed with a sequence of lifting steps [106]. The lifting scheme provides a convenient
framework for the implementation of new wavelet-based signal analysis techniques, and is easily
modified for use in specific application areas with specific requirements. These characteristics
make lifting an attractive option for the development of a wavelet-based signal modelling
diagnostic technique.
A diagnostic technique based on the adaptive lifting work of Claypoole [107] was developed by

Samuel and Pines [108]. In some cases, it was observed that the model, developed using healthy-
state transmission vibration data, was able to effectively represent other sets of healthy-state data
while failing to effectively represent the damaged-state vibration signal. The result was a small
prediction error in the healthy-state case and a large prediction error in the damaged-state case.
Thus it was shown that the prediction error could be potentially used to indicate the presence of
damage.
It was subsequently found that, in many cases, adaptive lifting by itself yields a model that is

too flexible to allow the effective distinction of healthy-state and damaged-state vibration signals.
Hence, it was determined that adaptive lifting should be modified to improve the sensitivity to
damage. Specifically, constraints on certain basis characteristics were deemed necessary to
enhance the detection of local wave-form changes caused by certain types of gear damage. This
type of adaptation, where in some cases the technique is constrained to the choice of some subset
of bases within the dictionary, is referred to as constrained adaptation. Thus, an adaptive signal
processing technique based on lifting and incorporating some form of constrains can be referred
to as constrained adaptive lifting (CAL).
The goal of these constraints is to divide the tooth mesh waveform into simple, effectively

monotonic functions, so that they can be approximated by low-order spline functions. The
resulting model should be rigid to the appearance of higher-order features associated with
damage, thus yielding large prediction errors:
�
 The individual tooth mesh wave-form is divided into analysis domains based on the slope
inflection points of a healthy-state transmission vibration signal. The domains are fixed and
used for subsequent analysis of future-state vibration signals. Lifting occurs only within each
domain.
�
 The predictor P is constrained to be the lowest order least-squares spline approximation that
provides a sufficiently small prediction error for a healthy-state transmission vibration signal.
Both the order and the knots are fixed for the analysis of future-state vibration signals.

The adaptation process leading to the determination of the constrained properties and thus the
development of the model occurs only offline. Once the model has been constructed, adaptation is
no longer required. The model is then used to analyze vibration data collected from an operating
transmission, and the prediction error vector is inspected for anomalies indicating damage.
In order to better quantify the prediction error vector generated by the CAL diagnostic

algorithm, a metric, referred to as CAL4 was developed. Let the CAL prediction error vector for
an individual tooth be denoted as r: Thus, for a gear g with Ng teeth, the prediction error vector r
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for tooth Pn; n ¼ 1; . . . ;Ng is given as rn: The prediction error vector for the entire gear is the
then concatenation of the individual rn; and is denoted R. The metric CAL4 can be formed by
taking the normalized kurtosis of R. CAL4 is given as

CAL4 ¼
N

PN
i¼1ðRi � R̄Þ

4

½
PN

i¼1ðRi � R̄Þ
2
�2
; (34)

where R̄ is the mean of R and N is the total number of data points in R.
In CAL, the frequencies that are preserved in the prediction error vector are time varying,

specifically, they vary from domain to domain. In addition, the frequencies which are preserved in
R are chosen based on the characteristics of the individual tooth mesh waveform associated
with the operation of the transmission, specifically, the conjugate action of the gear teeth. The set
of bases model the vibration signal associated with healthy conjugate action, and thus,
for a healthy transmission, the CAL prediction error is expected to contain only noise, and yield a
value of 3.
It was demonstrated that the CAL diagnostic technique was capable of detecting damage on

individual teeth of a planetary gearbox [101]. In addition, CAL4 was shown to be more effective
than FM4 for the detection of tooth face damage.
8. Performance assessment of diagnostic techniques

Many of the transmission diagnostic techniques presented in this section have been validated
using one of two primary transmission vibration data sets. These are referred to as the Westland
data set and the OH-58 data set. The Westland data set was obtained as part of the Air Vehicle
Diagnostics System (AVDS) project. Under this project, the Office of Naval Research funded a
program of seeded fault testing on the aft-main transmission of the H-46 helicopter at Westland
Helicopters in 1993 [109]. The OH-58 data set was collected from a test rig mounted OH-58 main
transmission at the NASA Lewis Research Center in 1992 as part of a joint Navy/NASA/Army
advanced lubrication evaluation program [7].
Unfortunately, a number of the techniques have been evaluated using internal transmission test

rigs or proprietary data sets. Thus, the performance of these techniques cannot be compared using
the results presented in the literature.
Research is continuing into comparing the performance of currently available transmission

damage detection techniques [13,26,110]. However, there is currently no comprehensive, standard
mechanism for the evaluation of new transmission diagnostic techniques. The need for a general
means of comparison and evaluation has been recognized and is the focus of current research. A
modular, real-time testbed for the evaluation of new damage detection techniques is under
development by Conroy et al. [111]. This system is being developed using LabVIEW [112] and is
designed to be general and easily modified so that any data format may be analyzed and damage
detection techniques may be incorporated as a LabVIEW virtual instruments. A standard data set
for the evaluation of transmission diagnostic systems is being created by Maynard et al. [113]. One
H-46 aft transmission has been instrumented for initial tests and flight checks with successful
results, and full squadron testing is planned. The Rotorcraft Industry Technology Association
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(RITA), Inc. is creating a data base of vibration data for the evaluation of transmission diagnostic
techniques. A standard method of the evaluation will be invaluable to the research community.
9. Emerging technologies

Research in the area of transmission health monitoring is constantly advancing the state of the
art, and new technologies continue to emerge. In the area of vibration analysis, adaptive signal
processing techniques have only begun to be explored, and new techniques must be investigated.
For example, the Empirical Mode Decomposition (EMD) [114], a new signal processing technique
that has proven useful in other signal processing applications such as financial time series analysis
[115], beam and plate anomaly detection [116] and electrogastrogram (EGG) analysis [117], has
yet to be evaluated. For a given signal, EMD yields a finite and often small number of Intrinsic
Mode Functions (IMFs), where an IMF is defined as a function having a zero mean and an equal
number of minima and maxima. Given the properties of an IMF, a Hilbert transform can be
applied to obtain instantaneous frequencies as functions of time. The combination of EMD and
the Hilbert transform is referred to as the Hilbert–Huang transform. The Hilbert–Huang
transform is able to provide sharp indications of structures embedded within the signal such as
those associated with gear tooth damage.
Another approach is a system that combines the output of vibration-based diagnostic

techniques with diagnostics techniques based on data from various types of sensors such as oil
debris monitors, load sensors and acoustic sensors, as well as other data types such as usage
history. These techniques offer potentially significant improvements in robustness and accuracy.
Thus, research is continuing into new sensor technologies such as acoustic arrays [118], fiber optic
sensors, micro electric mechanical system (MEMS) wireless strain sensors and accelerometers, and
embedded eddy current sensors that could provide new methods for transmission diagnostics
which complement vibration signal analysis. Data fusion is drawing an increasing amount of
attention as a method to process the output of multiple diagnostic algorithms. For example, the
technique presented by Essawy et al. [77] should help prevent the occurrence of false alarms in on-
board HUM systems. In addition, multidimensional health monitoring using techniques such as
singular value decomposition (SVD) and principle component analysis (PCA) is being considered.
For example, Cempel [119] has presented an introductory approach to multidimensional health
monitoring of mechanical systems using SVD. Multidimensional health monitoring may offer
more accurate diagnostics and lower false alarm rates than any single algorithm acting alone and
thus is a promising area for future research.
10. Summary

In summary, over the past 25 years, much research has been devoted to the development of
vibration-based transmission damage detection techniques. Many of these techniques have been
shown to successfully detect damage in helicopter transmission systems, and some are
incorporated in production HUM systems. However, there is still room for improvement, and
thus research into new damage detection techniques is continuing.
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